test_prompt_most_recent_S.ipynb
https://colab.research.google.com/drive/1vzE3nGJm78E1SVJoCpKgl3D3HowdRXHp#scrollTo=qbjOx0YTJ2FP
most_recent_S_attn_pat.ipynb
https://colab.research.google.com/drive/1KaqcS92-BI4FZ7m-r8rCW9tIovxA_s93#scrollTo=VcFgqbcF4YvI
most_recent_S_name_movers_DRAFT.ipynb
https://colab.research.google.com/drive/1NCBOLPx038FxwEacmHDsCesWIAW1z8kU
Path patching finds how attention heads move information from inputs to other heads. So these input types take a subject using in-context learning and outputs a subject. Based on IOI findings, we expect to find:
Can be done w/ just GPT-2-small
Rewritten dataset: https://colab.research.google.com/drive/1NCBOLPx038FxwEacmHDsCesWIAW1z8kU#scrollTo=qau6bOQRXcrB&line=12&uniqifier=1
Rewritten copy_scores function:
https://colab.research.google.com/drive/1NCBOLPx038FxwEacmHDsCesWIAW1z8kU#scrollTo=-2rIAnfFqv62&line=5&uniqifier=1